Java 中的偏向锁和轻量级锁

在为了减少获得锁和释放锁带来的性能消耗,在 Java SE 1.6 中开始引入了 “偏向锁” 和 “轻量级锁” ,此时锁一共有四种状态,从低到高分别是:无锁状态、偏向锁状态、轻量级锁状态和重量级锁状态,这几个状态会随着竞争情况逐渐升级。锁可以升级但不能降级,意味着偏向锁升级成轻量级锁后不能降级成偏向锁。

锁状态

当某个线程要访问某个对象时,是如何判断该对象是否有锁的呢?这就需要检查对象的对象头了。 HotSpot 虚拟机的对象头(Object Header)分为两部分,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄(Generational GC Age)等。这部分数据的长度在32位和64位的 Java 虚拟机中分别会占用32个或64个比特,官方称它为 Mark Word。这部分是实现轻量级锁和偏向锁的关键。另外一部分用于存储指向方法区对象类型数据的指针,如果是数组对象,还会有一个额外的部分用于存储数组长度。

在无锁状态时,JVM(32位)的 Mark Word 默认储存结构如下图所示:

在运行期间,Mark Word 里的数据会随着锁标志位的变化而变化:

偏向锁

引入偏向锁的目的是消除数据在无竞争情况下的同步原语,进一步提高程序的运行性能。因为在大多数情况下,锁不仅不存在多线程竞争,而且总是由同一线程多次获得。偏向锁中的“偏”,就是偏心的“偏”、偏袒的“偏”。它的意思是这个锁会偏向于第一个获得它的线程,如果在接下来的执行过程中,该锁一直没有被其他的线程获取,则持有偏向锁的线程将永远不需要再进行同步。

偏向锁的获得

假设当前虚拟机启用了偏向锁(启用参数-XX:+UseBiased Locking,这是自JDK 6起HotSpot虚拟机的默认值),当一个线程访问同步块并获取锁时,会在对象头和栈帧中的锁记录里存储锁偏向的线程ID,以后该线程在进入和退出同步块时不需要进行CAS操作来加锁和解锁,只需简单地测试一下对象头的Mark Word里是否存储着指向当前线程的偏向锁。如果测试成功,表示线程已经获得了锁。如果测试失败,则需要再测试一下Mark Word中偏向锁的标识是否设置成1(表示当前是偏向锁):如果没有设置,则使用CAS竞争锁;如果设置了,则尝试使用CAS将对象头的偏向锁指向当前线程。

当对象进入偏向状态的时候,Mark Word大部分的空间(23个比特)都用于存储持有锁的线程ID了,这部分空间占用了原有存储对象哈希码的位置,在Java语言里面一个对象如果计算过哈希码,就应该一直保持该值不变(对象通过Object::hashCode()方法,将计算结果保存在对象头中)。因此,当一个对象已经计算过一致性哈希码后,它就再也无法进入偏向锁状态了;而当一个对象当前正处于偏向锁状态,又收到需要计算其一致性哈希码请求 [1] 时,它的偏向状态会被立即撤销,并且锁会膨胀为重量级锁。在重量级锁的实现中,对象头指向了重量级锁的位置,代表重量级锁的ObjectMonitor类里有字段可以记录非加锁状态(标志位为“01”)下的Mark Word,其中自然可以存储原来的哈希码。

偏向锁的撤销

偏向锁使用了一种等到竞争出现才释放锁的机制,所以当其他线程尝试竞争偏向锁时,持有偏向锁的线程才会释放锁。偏向锁的撤销,需要等待全局安全点(在这个时间点上没有正在执行的字节码)。它会首先暂停拥有偏向锁的线程,然后检查持有偏向锁的线程是否活着,如果线程不处于活动状态,则将对象头设置成无锁状态;如果线程仍然活着,拥有偏向锁的栈会被执行,遍历偏向对象的锁记录,栈中的锁记录和对象头的Mark Word要么重新偏向于其他线程,要么恢复到无锁或者标记对象不适合作为偏向锁,最后唤醒暂停的线程。

轻量级锁

轻量级锁是JDK 6时加入的新型锁机制,它名字中的“轻量级”是相对于使用操作系统互斥量来实现的传统锁而言的,因此传统的锁机制就被称为“重量级”锁。不过,需要强调一点,轻量级锁并不是用来代替重量级锁的,它设计的初衷是在没有多线程竞争的前提下,减少传统的重量级锁使用操作系统互斥量产生的性能消耗。

轻量级锁的加锁

在代码即将进入同步块的时候,如果此同步对象没有被锁定(锁标志位为“01”状态),虚拟机首先将在当前线程的栈帧中建立一个名为锁记录(Lock Record)的空间,用于存储锁对象目前的Mark Word的拷贝(官方为这份拷贝加了一个Displaced前缀,即Displaced Mark Word),这时候线程堆栈与对象头的状态如图所示:

然后,虚拟机将使用CAS操作尝试把对象的Mark Word更新为指向Lock Record的指针。如果这个更新动作成功了,即代表该线程拥有了这个对象的锁,并且对象Mark Word的锁标志位(Mark Word的最后两个比特)将转变为“00”,表示此对象处于轻量级锁定状态。这时候线程堆栈与对象头的状态如图所示:

如果这个更新操作失败了,那就意味着至少存在一条线程与当前线程竞争获取该对象的锁。虚拟机首先会检查对象的Mark Word是否指向当前线程的栈帧,如果是,说明当前线程已经拥有了这个对象的锁,那直接进入同步块继续执行就可以了,否则就说明这个锁对象已经被其他线程抢占了。如果出现两条以上的线程争用同一个锁的情况,那轻量级锁就不再有效,必须要膨胀为重量级锁,锁标志的状态值变为“10”,此时Mark Word中存储的就是指向重量级锁(互斥量)的指针,后面等待锁的线程也必须进入阻塞状态。

轻量级锁的解锁

它的解锁过程也同样是通过CAS操作来进行的,如果对象的Mark Word仍然指向线程的锁记录,那就用CAS操作把对象当前的Mark Word和线程中复制的Displaced Mark Word替换回来。假如能够成功替换,那整个同步过程就顺利完成了;如果替换失败,则说明有其他线程尝试过获取该锁,就要在释放锁的同时,唤醒被挂起的线程。

轻量级锁能提升程序同步性能的依据是“对于绝大部分的锁,在整个同步周期内都是不存在竞争的”这一经验法则。如果没有竞争,轻量级锁便通过CAS操作成功避免了使用互斥量的开销;但如果确实存在锁竞争,除了互斥量的本身开销外,还额外发生了CAS操作的开销。因此在有竞争的情况下,轻量级锁反而会比传统的重量级锁更慢。

总结

优点 缺点 适用场景
偏向锁 加锁和解锁不需要额外的消耗,和执行非同步方法相比仅存在纳秒级的差距 如果线程间存在锁竞争,会带来额外的锁撤销的消耗 适用于只有一个线程访问同步块场景
轻量级锁 竞争的线程不会阻塞,提高了程序的响应速度 如果始终得不到锁竞争的线程,使用自旋会消耗 CPU 追求响应时间,同步块执行速度非常快
重量级锁 线程竞争不适用自旋,不会消耗 CPU 线程阻塞,响应时间缓慢 追求吞吐量,同步块执行速度较长

参考

[1] 方腾飞,魏鹏,程晓明. “Java并发编程的艺术 (Java核心技术系列)。” Apple Books.

[2] 周志明. “深入理解Java虚拟机:JVM高级特性与最佳实践(第3版)。” Apple Books.


Java 中的偏向锁和轻量级锁
https://uponclouds.top/2025/07/15/Java偏向锁与轻量锁/
作者
Gentle He
发布于
2025年7月15日
许可协议